Vocabulary tree

Vocabulary tree

* Recognition can scale to very large databases using the Vocabulary Tree indexing approach
[Nistér and Stewénius, CVPR 2006]. Vocabulary Tree performs instance object recognition.
It does not perform recognition at category-level.

* Vocabulary Tree method follows three steps:
1. organize local descriptors of images a in a tree using hierarchical k-means clustering.
Inverted files are stored at each node with scores (offline).
2. generate a score for a given query image based on Term Frequency — Inverse Document

Frequency.
3. find the images in the database that best match that score.

* Vocabulary tree supports very efficient retrieval. It only cares about the distance between a query
feature and each node.

Building the Vocabulary Tree

The vocabulary tree is a hierarchical set of cluster centers and their corresponding Voronoi
regions:
— For each image in the database, extract MSER regions and calculate a set of feature point
descriptors (e.g. 128 SIFT).
— Build the vocabulary tree using hierarchical k-means clustering:
* run k-means recursively on each of the resulting quantization cells up to a max number
of levels L (L=6 max suggested)
* nodes are the centroids; leaves are the visual words.
 kdefines the branch-factor of the tree, which indicates how fast the tree branches
(k=10 max suggested)

* Alarge number of elliptical regions are extracted from the image and warped to canonical
positions. A descriptor vector is computed for each region. The descriptor vector is then
hierarchically quantized by the vocabulary tree.

* With each node in the vocabulary tree there is an associated inverted file with references to the
images containing an instance of that node.

Hierarchical k-means clustering

\

AN Y

5

i

|

)

I

Slide from D. Nister

Slide from D. Nister

o . .w e .
o .
Lee a0 e, e
0 * oooo o °
JRC T ° oo‘ooo .
° ° ooo 0 ¢ ¢
e o o. LI o’
TR Y I
o.oo e® o ooo.oﬂ ooo.o
.‘0.. . .00 .0”0400..00 .“
ooO o.o ou oo ¢ ®
L e ° L4 '
Q o ° . [J °
° o ° N °
o °
°° LIPS N
[J o * .oo.ooo
°. ooo ¢ ‘o
oo Ooo e * o
L [)
.. ° o ° °. 0
® ® .. []
o, 0
o ° o
* o °
3 e %o °s
o ° [°
.o .' (
° o o ©o
o o
o o o
o
.. [
o

Slide from D. Nister

Perform hierarchical k-means clustering

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

As the vocabulary tree is formed and is on-line, new images can be inserted in the
database.

Slide from D. Nister

Adding images to the tree

* Adding an image to the database requires the following steps:
- Image feature descriptors are computed.

- Each descriptor vector is dropped down from the root of the tree and quantized into a path
down the tree

Slide from D. Nister

Slide from D. Nister

Slide from D. Nister

!

Slide from D. Nister

Querying with Vocabulary Tree

In the online phase, each descriptor vector is propagated down the tree by at each level comparing
the descriptor vector to the £ candidate cluster centers (represented by & children in the tree) and
choosing the closest one.

k dot products are performed at each level, resulting in a total of AL dot products, which is very
efficient if £ is not too large. The path down the tree can be encoded by a single integer and is then
available for use in scoring.

The relevance of a database image to the query image based on how similar the paths down the
vocabulary tree are for the descriptors from the database image and the query image. The scheme
assigns weights to the tree nodes and defines relevance scores associated to images.

Paths of the tree for one
image with 400 features

Scoring

* Ateachnode i aweightw, is assigned that can be defined according to one of different schemes:
— aconstant weighting scheme w.=k
- an entropy weighting scheme: w, = log| — | (inverse document frequency)
i where N is the number of database images

and N, is the number of images with at least
one descriptor vector path through node i

* Itis possible to use stop lists, where w; is set to zero for the most frequent and/or infrequent
symbols.

Node score

N=4 N=2 = w =log(2)

N=4 N=1 - w=1log(4)

e
Image from D. Nister /

e Query g; and database vectors d, are defined according to the assigned weights as :

where m; is the number of the descriptor
vectors of the query with a path along the
node i and w; its weight

n. is the the number of the descriptor vectors of

1

each database image with a path along the
node i.

d,=nw, — S=2log(2) S =2 log(4)

e Each database image is given a relevance score based on the L1 normalized difference between

the query and the database vectors q d
f

lgllldl

e Scores for the images in the database are accumulated. The winner is the image in the database
with the most common information with the input image.

s(g.d) =||

Inverted file index

* Toimplement scoring efficiently, an inverted file index is associated to each node of the vocabulary
tree (the inverted file of inner nodes is the concatenation of it’s children’s inverted files).
* Inverted files at each node store the id-numbers of the images in which a particular node occurs

and the term frequency of that image. Indexes back to the new image are then added to the
relevant inverted files.

n;, =n. times visual word i appears in doc d
n; =n.visual words in doc d
Niq
t; = —
ng

Inverted file index

D1, t;;=1/n,, Imgl D1, t,;=1/n,, Img2

D2, t,,=2/n,, Imgl

Image from D.
Nister

Slide from D. Nister

Performance considerations

Performance of vocabulary tree is largely dependent upon its structure. Most important factors
to make the method effective are:
— Alarge vocabulary tree (16M words against 10K of Video Google)
— Using informative features vs. uniform (compute information gain of features and select
the most informative to build the tree i.e. features found in all images of a location,
features not in any image of another location)

— - gmiloam

Mutch at Correc

v Bet

0.25% 1 | 1 1 | 1
SO0 10000 15000 20000 25000 10000

¥ lmages in Database 29

Performance figures on 6376 images

@
o

~J
o

Performance increases significantly with the number of leaf nodes

(o)]
o

Performance (%)

00k 100k 1M _10M

Nr of Leaf Nodes

(o]
o

~J
€O

Performance increases with the branch factor k

Performance (%)
~ ~ 0~
o ~ O

~J
o

4 10 100 1000
Branch Factor k

[o0)
o

/—ﬂ ' Performance increases when the amount of training data grows

Performance (%)
~J
n

7qOO ik 10k 100k From Tommasi
Amount of Training Data

